1025. Divisor Game 除数博弈
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/divisor-game/
题目描述
Alice and Bob take turns playing a game, with Alice starting first.
Initially, there is a number N
on the chalkboard. On each player's turn, that player makes a move consisting of:
- Choosing any
x
with0 < x < N
andN % x == 0
. - Replacing the number N on the chalkboard with
N - x
.
Also, if a player cannot make a move, they lose the game.
Return True if and only if Alice wins the game, assuming both players play optimally.
Example 1:
Input: 2
Output: true
Explanation: Alice chooses 1, and Bob has no more moves.
Example 2:
Input: 3
Output: false
Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.
Note:
- 1 <= N <= 1000
题目大意
对于数字N,做两个操作:1. 找出一个因数x,2. 把N换成N - x。两个人轮流做这个操作,问第一个人是否能赢。
解题方法
找规律
首先说结论:当N是偶数时第一个人一定赢,当N是奇数时第一个一定输。
- 奇数的因子只有奇数,偶数的因子至少一个偶数2
- 奇数 - 奇数 = 偶数
- 当Alice的值是N时必输,则当Alice的值是N+1时必赢(拿1即可)
那么,当N为下列数字时,先发的状态如下。 当N=1,输; 当N=2,赢(性质3); 当N=3,输(性质1和2,对方一定是偶数,上面的偶数情况都赢); 当N=4,赢(性质3); 当N=5,输(性质1和2,对方一定是偶数,上面的偶数情况都赢); ... 所以,N为偶数都赢,N为奇数都输。
C++代码如下:
class Solution {
public:
bool divisorGame(int N) {
return N % 2 == 0;
}
};
动态规划
动态规划就是很朴素的做法了,对每个位置i,遍历其因数x,判断N-x的状态,当N-x为输的时候自己赢。
C++代码如下:
class Solution {
public:
bool divisorGame(int N) {
if (N == 1) return false;
if (N == 2) return true;
vector<bool> dp(N, false);
dp[1] = true;
for (int i = 3; i <= N; ++i) {
for (int j = 1; j < i; ++j) {
if (i % j == 0 && !dp[i - j - 1]) {
dp[i - 1] = true;
break;
}
}
}
return dp[N - 1];
}
};
参考资料:https://leetcode.com/problems/divisor-game/discuss/368269/C%2B%2B-100-and-96-and
日期
2019 年 8 月 30 日 —— 赶在月底做个题