202. Happy Number 快乐数
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
[LeetCode]
题目地址:https://leetcode.com/problems/happy-number/
Total Accepted: 36352 Total Submissions: 109782 Difficulty: Easy
题目描述
Write an algorithm to determine if a number is "happy".
A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.
Example:
Input: 19
Output: true
Explanation:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
题目大意
判断一个数字是不是开心的数字,所谓开心数字,就是把它的每一位数字求平方和之后构成新数字,然后继续这个操作,看最后能不能到1.
解题方法
递归
使用递归的方法。
我自己的算法,10以下的Happy Number 只有 1和7 ,如果一个数计算到只有个位数时,如果计算到十位以下,这个数是1或7,返回true,否则,返回false。
public static boolean isHappy(int n) {
int ans = 0;
if (n == 1 || n == 7) {
return true;
} else if (n > 1 && n < 10) {
return false;
} else {
String numString = "" + n;
char numChar[] = numString.toCharArray();
for (char aNumChar : numChar) {
ans += (aNumChar - '0') * (aNumChar - '0');
}
}
return isHappy2(ans);
}
方法一改进:
没必要10以下的数字啊,1到7之间的都是false。直接判断数到1和7之间 就false就好了。
7通过计算也回到1。
public static boolean isHappy(int n) {
int ans = 0;
if (n == 1) {
return true;
} else if (n > 1 && n < 7) {
return false;
} else {
String numString = "" + n;
char numChar[] = numString.toCharArray();
for (char aNumChar : numChar) {
ans += (aNumChar - '0') * (aNumChar - '0');
}
}
return isHappy5(ans);
}
迭代
同计算循环小数一样, 如果出现循环, 则无需继续计算,直接返回false即可.
每次计算时,把已经计算数放到一个集合里面,在计算过程中如果出现循环(集合里已经有这个数字),返回false。否则一直计算。
class Solution(object):
def isHappy(self, n):
"""
:type n: int
:rtype: bool
"""
visited = set()
while n not in visited:
visited.add(n)
nx = 0
while n != 0:
nx += (n % 10) ** 2
n //= 10
if nx == 1:
return True
n = nx
return False
迭代的C++代码如下:
class Solution {
public:
bool isHappy(int n) {
unordered_set<int> visited;
visited.insert(n);
while (n != 1) {
int pre = n;
int next = 0;
while (pre) {
next += (pre % 10) * (pre % 10);
pre /= 10;
}
n = next;
if (visited.count(n))
break;
visited.insert(n);
}
return n == 1;
}
};
日期
2015/10/16 16:06:37 2018 年 11 月 19 日 —— 周一又开始了 2019 年 1 月 14 日 —— 凛冬将至