207. Course Schedule 课程表
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
题目地址: https://leetcode.com/problems/course-schedule/description/
题目描述:
There are a total of n courses you have to take, labeled from 0
to n-1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs
, is it possible for you to finish all courses?
Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Note:
- The input prerequisites is a graph represented by
a list of edges
, not adjacency matrices. Read more about how a graph is represented. - You may assume that there are no duplicate edges in the input prerequisites.
题目大意
课程表上有一些课,是必须有修学分的先后顺序的,必须要求在上完某些课的情况下才能上下一门。问是否有方案修完所有的课程?
解题方法
方法一:拓扑排序,BFS
看到给的第二个测试用例立马就明白了,就是判断这些课程能否构成有向无环图(DAG)。而任何时候判断DAG的方法要立刻想到拓扑排序。
拓扑排序是对有向无环图(DAG)而言的,对图进行拓扑排序即求其中节点的一个拓扑序列,对于所有的有向边(U, V)(由U指向V),在该序列中节点U都排在节点V之前。
方法是每次选择入度为0的节点,作为序列的下一个节点,然后移除该节点和以从节点出发的所有边。
那这个方法比较简单粗暴了:要循环N次,这个循环次数并不是遍历节点的意思,而是我们如果正常取点的话,N次就能把所有的节点都取完了,如果N次操作结束还没判断出来,那么就不是DAG.在这N次中,每次都找一个入度为0的点,并把它的入度变为-1,作为已经取过的点不再使用,同时把从这个点指向的点的入度都-1.
这个过程中,如果找不到入度为0的点,那么说明存在环。如果N次操作,每次都操作成功的去除了一个入度为0的点,那么说明这个图是DAG.
时间复杂度是O(N ^ 2),空间复杂度是O(N)。
class Solution(object):
def canFinish(self, N, prerequisites):
"""
:type N,: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
graph = collections.defaultdict(list)
indegrees = collections.defaultdict(int)
for u, v in prerequisites:
graph[v].append(u)
indegrees[u] += 1
for i in range(N):
zeroDegree = False
for j in range(N):
if indegrees[j] == 0:
zeroDegree = True
break
if not zeroDegree: return False
indegrees[j] = -1
for node in graph[j]:
indegrees[node] -= 1
return True
方法二:拓扑排序,DFS
同样是拓扑排序,但是换了个做法,使用DFS。这个方法是,我们每次找到一个新的点,判断从这个点出发是否有环。
具体做法是使用一个visited数组,当visited[i]值为0,说明还没判断这个点;当visited[i]值为1,说明当前的循环正在判断这个点;当visited[i]值为2,说明已经判断过这个点,含义是从这个点往后的所有路径都没有环,认为这个点是安全的。
那么,我们对每个点出发都做这个判断,检查这个点出发的所有路径上是否有环,如果判断过程中找到了当前的正在判断的路径,说明有环;找到了已经判断正常的点,说明往后都不可能存在环,所以认为当前的节点也是安全的。如果当前点是未知状态,那么先把当前点标记成正在访问状态,然后找后续的节点,直到找到安全的节点为止。最后如果到达了无路可走的状态,说明当前节点是安全的。
findOrder函数中的for循环是怎么回事呢?这个和BFS循环次数不是同一个概念,这里的循环就是看从第i个节点开始能否到达合理结果。这个节点可能没有出度了,那就把它直接放到path里;也可能有出度,那么就把它后面的节点都进行一次遍历,如果满足条件的节点都放到path里,同时把这次遍历的所有节点都标记成了已经遍历;如果一个节点已经被安全的访问过,那么就放过它,继续遍历下个节点。
时间复杂度是O(N ^ 2),空间复杂度是O(N)。
class Solution(object):
def canFinish(self, N, prerequisites):
"""
:type N,: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
graph = collections.defaultdict(list)
for u, v in prerequisites:
graph[u].append(v)
# 0 = Unknown, 1 = visiting, 2 = visited
visited = [0] * N
for i in range(N):
if not self.dfs(graph, visited, i):
return False
return True
# Can we add node i to visited successfully?
def dfs(self, graph, visited, i):
if visited[i] == 1: return False
if visited[i] == 2: return True
visited[i] = 1
for j in graph[i]:
if not self.dfs(graph, visited, j):
return False
visited[i] = 2
return True
参考资料:
https://leetcode.com/problems/course-schedule/discuss/58509/18-22-lines-C++-BFSDFS-Solutions https://www.youtube.com/watch?v=M6SBePBMznU
日期
2018 年 10 月 6 日 —— 努力看书