279. Perfect Squares 完全平方数


作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/


@TOC

题目地址:https://leetcode.com/problems/perfect-squares/

题目描述

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3 
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

题目大意

判断一个正整数最少能成为几个数字的平方和。

解题方法

四平方和定理

这道题是考察四平方和定理,说明每个正整数均可表示为4个整数的平方和。

引用自Grandyang大神:

根据四平方和定理,任意一个正整数均可表示为4个整数的平方和,其实是可以表示为4个以内的平方数之和,那么就是说返回结果只有1,2,3或4其中的一个,首先我们将数字化简一下,由于一个数如果含有因子4,那么我们可以把4都去掉,并不影响结果,比如2和8,3和12等等,返回的结果都相同,读者可自行举更多的栗子。

还有一个可以化简的地方就是,如果一个数除以8余7的话,那么肯定是由4个完全平方数组成,这个不会证明。

那么做完两步后,一个很大的数有可能就会变得很小了,大大减少了运算时间,下面我们就来尝试的将其拆为两个平方数之和,如果拆成功了那么就会返回1或2,因为其中一个平方数可能为0. 根据a和b的两个数字是不是0就知道能不能拆成1个或者2个数字的平方和。如果上面这些都不行,那么就是只能3个数字的平方和了。

C++代码如下:

class Solution {
public:
    int numSquares(int n) {
        while (n % 4 == 0) n /= 4;
        if (n % 8 == 7) return 4;
        for (int a = 0; a * a < n; ++a) {
            int b = sqrt(n - a * a);
            if (a * a + b * b == n) {
                return !!a + !!b;
            }
        }
        return 3;
    }
};

java代码如下:

public class Solution {
    public int numSquares(int n) {
		while (n % 4 == 0) n /= 4;
		if (n % 8 == 7) return 4;
		for (int a = 0; a * a < n; a++) {
			for (int b = 0; b * b <= n - a * a; b++) {
				if (a * a + b * b == n) {
					return (a > 0 ? 1 : 0) + (b > 0 ? 1 : 0);
				}
			}
		}
		return 3;
    }
}

动态规划

我们定义dp[i]为整数i最少能分解成多少个正整数的平方和。那么有,

dp[i + j * j] = min(dp[i + j * j], dp[i] + 1).

如果一个数x可以表示为一个任意数a加上一个平方数bxb,也就是x=a+bxb,那么能组成这个数x最少的平方数个数,就是能组成a最少的平方数个数加上1(因为b*b已经是平方数了)。

C++代码如下:

class Solution {
public:
    int numSquares(int n) {
        //dp[i] means how many perfect squres it needs.
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; ++i) {
            for (int j = 1; i + j * j <= n; ++j) {
                dp[i + j * j] = min(dp[i + j * j], dp[i] + 1);
            }
        }
        return dp[n];
    }
};

Java代码如下:

public static int numSquares(int n) {
	int[] dp = new int[n + 1];
	// 将所有非平方数的结果置最大,保证之后比较的时候不被选中
	Arrays.fill(dp, Integer.MAX_VALUE);
	// 将所有平方数的结果置1
	for (int i = 0; i * i <= n; i++) {
		dp[i * i] = 1;
	}
	// 从小到大找任意数a
	for (int a = 0; a <= n; a++) {
		// 从小到大找平方数bxb
		for (int b = 0; a + b * b <= n; b++) {
			// 因为a+b*b可能本身就是平方数,所以我们要取两个中较小的
			dp[a + b * b] = Math.min(dp[a] + 1, dp[a + b * b]);
			System.out.println(a + b * b + ":--" + Arrays.toString(dp));
		}
	}
	return dp[n];
}

看下输出就明白了:

0:--[1, 1, 2147483647, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
1:--[1, 1, 2147483647, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
4:--[1, 1, 2147483647, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
9:--[1, 1, 2147483647, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
1:--[1, 1, 2147483647, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
2:--[1, 1, 2, 2147483647, 1, 2147483647, 2147483647, 2147483647, 2147483647, 1, 2147483647]
5:--[1, 1, 2, 2147483647, 1, 2, 2147483647, 2147483647, 2147483647, 1, 2147483647]
10:--[1, 1, 2, 2147483647, 1, 2, 2147483647, 2147483647, 2147483647, 1, 2]
2:--[1, 1, 2, 2147483647, 1, 2, 2147483647, 2147483647, 2147483647, 1, 2]
3:--[1, 1, 2, 3, 1, 2, 2147483647, 2147483647, 2147483647, 1, 2]
6:--[1, 1, 2, 3, 1, 2, 3, 2147483647, 2147483647, 1, 2]
3:--[1, 1, 2, 3, 1, 2, 3, 2147483647, 2147483647, 1, 2]
4:--[1, 1, 2, 3, 1, 2, 3, 2147483647, 2147483647, 1, 2]
7:--[1, 1, 2, 3, 1, 2, 3, 4, 2147483647, 1, 2]
4:--[1, 1, 2, 3, 1, 2, 3, 4, 2147483647, 1, 2]
5:--[1, 1, 2, 3, 1, 2, 3, 4, 2147483647, 1, 2]
8:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
5:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
6:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
9:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
6:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
7:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
10:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
7:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
8:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
8:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
9:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
9:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
10:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
10:--[1, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2]
2

上面的dp是正向推导,可能不利于理解,一般情况下,我们习惯于在求dp[i]的时候,向前面已经有的状态中查找。

这么做的C++代码如下:

class Solution {
public:
    int numSquares(int n) {
        // dp[i] means how many perfect squres it needs.
        vector<int> dp;
        dp.push_back(0);
        for (int i = 1; i <= n; ++i) {
            int val = INT_MAX;
            for (int j = 1; j * j <= i; ++j) {
                val = min(val, dp[i - j * j] + 1);
            }
            dp.push_back(val);
        }
        return dp[n];
    }
};

参考资料:

http://segmentfault.com/a/1190000003768736#articleHeader1open in new windowhttp://www.cnblogs.com/grandyang/p/4800552.htmlopen in new window

日期

2015/11/15 20:43:42 2016/4/29 21:05:01 2019 年 1 月 7 日 —— 新的一周开始啦啦啊