497. Random Point in Non-overlapping Rectangles 非重叠矩形中的随机点
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
题目地址: https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/description/
题目描述:
Given a list of non-overlapping axis-aligned rectangles rects
, write a function pick
which randomly and uniformily picks an integer point in the space covered by the rectangles.
Note:
- An integer point is a point that has integer coordinates.
- A point on the perimeter of a rectangle is included in the space covered by the rectangles.
i
th rectangle =rects[i]
=[x1,y1,x2,y2]
, where[x1, y1]
are the integer coordinates of the bottom-left corner, and[x2, y2]
are the integer coordinates of the top-right corner.- length and width of each rectangle does not exceed
2000
. 1 <= rects.length <= 100
pick
return a point as an array of integer coordinates[p_x, p_y]
pick
is called at most10000
times.
Example 1:
Input:
["Solution","pick","pick","pick"]
[[[[1,1,5,5]]],[],[],[]]
Output:
[null,[4,1],[4,1],[3,3]]
Example 2:
Input:
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
Output:
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]
Explanation of Input Syntax:
The input is two lists: the subroutines called and their arguments. Solution's constructor has one argument, the array of rectangles rects. pick has no arguments. Arguments are always wrapped with a list, even if there aren't any.
题目大意
给出了几个不重叠的长方形,按照覆盖面积随机在这些长方形中随机取横纵坐标都是整数的点。
解题方法
既然看到不重叠了,而且明显同一长方形内部的整数点被选择的概率相同,不同长方形内部的点被选择的概率等于该长方形的面积。那么我们肯定想到的是首先按照面积随机选择一个长方形,然后再在长方形中随机选择一个整数点就ok了。
所以,怎么按照面积选点呢?于是528. Random Pick with Weight就派到用场了。思想是把PDF转换成CDF,然后再随机选择点,找到这个点的upper_bound。整体的思路还是挺新颖的,所以一定得先把528题做出来才能做这个题。
这个题的做法基本一致,我提交错误好几次,最后通过思考题目给出的测试用例找到了原因。看题目给的第二个测试用例中,有个长方形是[1, 0, 3, 0]
,这个面积不是0么?但是题目也认为这个是有3个整数点的长方形。所以求面积的方式得改啊,这个题不是简单的求长方形的面积,而是求长方形中整数点的个数,计算方式是(x2 - x1 + 1) * (y2 - y1 + 1)
。
初始化的时间复杂度是O(N),每次查询的时间复杂度是O(logN),空间复杂度是O(N)。
class Solution(object):
def __init__(self, rects):
"""
:type rects: List[List[int]]
"""
self.rects = rects
self.N = len(rects)
areas = [(x2 - x1 + 1) * (y2 - y1 + 1) for x1, y1, x2, y2 in rects]
self.preSum = [0] * self.N
self.preSum[0] = areas[0]
for i in range(1, self.N):
self.preSum[i] = self.preSum[i - 1] + areas[i]
self.total = self.preSum[-1]
def pickRect(self):
rand = random.randint(0, self.total - 1)
return bisect.bisect_right(self.preSum, rand)
def pickPoint(self, rect):
x1, y1, x2, y2 = rect
x = random.randint(x1, x2)
y = random.randint(y1, y2)
return x, y
def pick(self):
"""
:rtype: List[int]
"""
rectIndex = self.pickRect()
rect = self.rects[rectIndex]
return self.pickPoint(rect)
# Your Solution object will be instantiated and called as such:
# obj = Solution(rects)
# param_1 = obj.pick()
参考资料:
https://blog.csdn.net/fuxuemingzhu/article/details/81807215
日期
2018 年 10 月 16 日 —— 雨后天晴霾散