501. Find Mode in Binary Search Tree 二叉搜索树中的众数
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/find-mode-in-binary-search-tree/#/description
题目描述
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
题目大意
找出一个BST中出现次数最多的节点们。
解题方法
见到BST就想到中序遍历。这个题中的BST是可以包含相同的元素的,题目的要求就是找出相同的元素出现次数最多的是哪几个。那么就可以先进行中序遍历得到有序的排列,如果两个相邻的元素相同,那么这个就是连续的,找出连续最多的即可。题目思路就是BST的中序遍历加上最长连续相同子序列。
如果使用附加空间的话,可以使用hash保存每个节点出现的次数。
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def findMode(self, root):
"""
:type root: TreeNode
:rtype: List[int]
"""
if not root: return []
self.count = collections.Counter()
self.inOrder(root)
freq = max(self.count.values())
res = []
for item, c in self.count.items():
if c == freq:
res.append(item)
return res
def inOrder(self, root):
if not root:
return
self.inOrder(root.left)
self.count[root.val] += 1
self.inOrder(root.right)
题目建议不要用附加空间hash等,方法是计算了两次,一次是统计最大的模式出现的次数,第二次的时候构建出来了数组,然后把出现次数等于最大模式次数的数字放到数组的对应位置。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int[] findMode(TreeNode root) {
inOrder(root);
modes = new int[modeCount];
currCount = 0;
modeCount = 0;
inOrder(root);
return modes;
}
int currVal = 0;
int currCount = 0;
int maxCount = 0;
int modeCount = 0;
int[] modes;
public void handleValue(int val){
if(currVal != val){
currVal = val;
currCount = 0;
}
currCount++;
if(currCount > maxCount){
maxCount = currCount;
modeCount = 1;
}else if (currCount == maxCount){
if(modes != null){
modes[modeCount] = currVal;
}
modeCount++;
}
}
public void inOrder(TreeNode root){
if(root == null){
return;
}
inOrder(root.left);
handleValue(root.val);
inOrder(root.right);
}
}
日期
2017 年 5 月 3 日 2018 年 11 月 23 日 —— 这就星期五了??