51. N-Queens N 皇后
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/n-queens/
题目描述
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
题目大意
求n皇后问题的每个解。注意题意,n皇后问题是在n*n的棋盘上放n个皇后,每一种放置方案。
解题方法
回溯法
这个题是52. N-Queens II题目的拓展,52题只要求了统计个数,这个题要求把每一种结果写出来。其实代码基本一样了,只是最后在搜索到对应的解的时候,52题只把结果+1即可,现在的这个题需要构造出对应的放置方案,然后放入到res中。
所以定义了两个函数:helper函数是我们即将要处理row行了,进行回溯;isValid是我们如果这一步放在第row,col位置,合不合法?
python代码如下:
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<int> board(n, -1);
vector<vector<string>> res;
helper(board, res, 0);
return res;
}
// how to put in row? (havent put down yet)
void helper(vector<int>& board, vector<vector<string>>& res, int row) {
const int N = board.size();
if (row == N) {
vector<string> path(N, string(N, '.'));
for (int i = 0; i < N; i++) {
path[i][board[i]] = 'Q';
}
res.push_back(path);
} else {
for (int col = 0; col < N; col++) {
board[row] = col;
if (isValid(board, row, col)) {
helper(board, res, row + 1);
}
board[row] = -1;
}
}
}
// have put down in (row, col), alright?
bool isValid(vector<int>& board, int row, int col) {
for (int prow = 0; prow < row; prow ++) {
int pcol = board[prow];
if (pcol == col || abs(prow - row) == abs(pcol - col)) {
return false;
}
}
return true;
}
};
日期
2018 年 12 月 23 日 —— 周赛成绩新高