667. Beautiful Arrangement II 优美的排列 II
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/beautiful-arrangement-ii/description/
题目描述
Given two integers n
and k
, you need to construct a list which contains n different positive integers ranging from 1 to n and obeys the following requirement: Suppose this list is [a1, a2, a3, ... , an]
, then the list [|a1 - a2|, |a2 - a3|, |a3 - a4|, ... , |an-1 - an|]
has exactly k distinct integers.
If there are multiple answers, print any of them.
Example 1:
Input: n = 3, k = 1
Output: [1, 2, 3]
Explanation: The [1, 2, 3] has three different positive integers ranging from 1 to 3, and the [1, 1] has exactly 1 distinct integer: 1.
Example 2:
Input: n = 3, k = 2
Output: [1, 3, 2]
Explanation: The [1, 3, 2] has three different positive integers ranging from 1 to 3, and the [2, 1] has exactly 2 distinct integers: 1 and 2.
Note:
- The n and k are in the range 1 <= k < n <= 104.
题目大意
完美分配的变种。这种完美匹配的定义是指,给出一种排列,其相邻元素的差的绝对值有指定值k种。
解题方法
借鉴了大神的思路。
举例来说,1 2 3 4 5 6 7 8 9 10
. 相邻元素的差值绝对值为1,出现了很多次。我们把后面部分的数字翻转一次,那么使得10和1临近到了一起,其他的数字的排列没有变化: 1 10 9 8 7 6 5 4 3 2
,此时就有了2种不同的临近数字的差值绝对值. 继续做下去,把9到2的数字再翻转,就有了3种不同的临近数字的差值绝对值: 1 10 2 3 4 5 6 7 8 9
.以此类推,找出k次即可。
class Solution(object):
def constructArray(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[int]
"""
a = list(range(1, n + 1))
for i in range(1, k):
a[i:] = a[:i-1:-1]
return a
上面的python代码是靠不停地翻转得到的,其实,也可以不用翻转,而是我们每次选取一个数字放到结果数组里面。选取的方式是从两头向中间取,这样取的时候,能够保证每次取一个数字就会产生一个不同的差值,也就需要把k减去一。当k还剩1的时候,把后面的数字从小到大排列即可,这样后面的数字的差值是1.也就是说,我们最后产生了k个不同的差值。
class Solution(object):
def constructArray(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[int]
"""
res = []
l, r = 1, n
while l <= r:
if k > 1:
if k % 2 == 1:
res.append(l)
l += 1
else:
res.append(r)
r -= 1
k -= 1
else:
res.append(l)
l += 1
return res
上面这个做法的C++代码如下:
class Solution {
public:
vector<int> constructArray(int n, int k) {
vector<int> res;
int l = 1, r = n;
while (l <= r) {
if (k > 1) {
if (k % 2 == 1) {
res.push_back(l++);
} else {
res.push_back(r--);
}
k --;
} else {
res.push_back(l++);
}
}
return res;
}
};
日期
2018 年 3 月 4 日 2018 年 12 月 15 日 —— 今天四六级