792. Number of Matching Subsequences 匹配子序列的单词数
2022年3月7日
【LeetCode】792. Number of Matching Subsequences 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/number-of-matching-subsequences/description/
题目描述:
Given string S and a dictionary of words word
s, find the number of words[i]
that is a subsequence of S.
Example :
Input:
S = "abcde"
words = ["a", "bb", "acd", "ace"]
Output: 3
Explanation: There are three words in words that are a subsequence of S: "a", "acd", "ace".
Note:
- All words in words and S will only consists of lowercase letters.
- The length of S will be in the range of [1, 50000].
- The length of words will be in the range of [1, 5000].
- The length of words[i] will be in the range of [1, 50].
题目大意
找出words里面有多少个S的子序列。注意,子序列可以不连续。
解题方法
最开始想的肯定是DP了,但是这种思路想歪了,因为不同words之间好像没有什么转移方程。。
现在又学到了一个新的判断是不是子序列的方法,使用字典保存s中字母所有索引,然后遍历word寻找索引。
对于word的每个位置的字符,同时用个prev变量保存遍历S时已经到达哪个位置了,然后从字典中寻找这个字符是否存在prev 后面出现过。很巧妙。
时间复杂度是O(S) + O(WLlog(S)),空间复杂度是O(S).
代码如下:
class Solution(object):
def numMatchingSubseq(self, S, words):
"""
:type S: str
:type words: List[str]
:rtype: int
"""
m = dict()
def isMatch(word, d):
if word in m:
return m[word]
prev = -1
for w in word:
i = bisect.bisect_left(d[w], prev + 1)
if i == len(d[w]):
return 0
prev = d[w][i]
m[word] = 1
return 1
d = collections.defaultdict(list)
for i, s in enumerate(S):
d[s].append(i)
ans = [isMatch(word, d) for word in words]
return sum(ans)
参考资料:
https://www.youtube.com/watch?v=l8_vcmjQA4g
日期
2018 年 9 月 25 日 —— 美好的一周又开始了,划重点,今天是周二