906. Super Palindromes 超级回文数


作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/


@TOC

题目地址:https://leetcode.com/problems/super-palindromes/description/

题目描述

Let's say a positive integer is a superpalindrome if it is a palindrome, and it is also the square of a palindrome.

Now, given two positive integers L and R (represented as strings), return the number of superpalindromes in the inclusive range [L, R].

Example 1:

Input: L = "4", R = "1000" Output: 4 Explanation: 4, 9, 121, and 484 are superpalindromes. Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.

Note:

  1. 1 <= len(L) <= 18
  2. 1 <= len(R) <= 18
  3. L and R are strings representing integers in the range [1, 10^18).
  4. int(L) <= int(R)

题目大意

找出在[L, R]双闭区间内,所有的超级回文数个数。超级回文数是指本身是回文数,并且它的算数平方根也是回文数。

解题方法

BFS解法

暴力求解的话一定超时,很明显超级回文数是很稀少的,我们还是想想怎么能找规律吧。这是一些超级回文数:

# n, n^2
(1, 1)
(2, 4)
(3, 9)
(11, 121)
(22, 484)
(101, 10201)
(111, 12321)
(121, 14641)
(202, 40804)
(212, 44944)
(1001, 1002001)
(1111, 1234321)
(2002, 4008004)

可以注意到,在除了(1,4,9)之外的其他超级回文数的算数平方根都是有0,1,2组成,而且两头都是由1或者2构成。

所以可以想到BFS的解法,我们使用一个队列保存的是回文的算数平均数n,然后我们拿出队列的每个元素,像中间部分插入0,1,2作为候选的n(保证仍然是回文),然后把候选的n再次放入到队列中去,如果算数平均数n的平方大于R了,就不用拿他计算新的数字了。

最后还需要把1,2,3给放入到候选里面去,也要判断候选的回文算数平均数的平方是不是回文数,如果是的话,结果加一。

时间复杂度不会算,空间复杂度不会算.超过65%.

class Solution:
    def superpalindromesInRange(self, L, R):
        """
        :type L: str
        :type R: str
        :rtype: int
        """
        que = collections.deque(["11", "22"])
        candi = set()
        while que:
            size = len(que)
            for _ in range(size):
                p = que.popleft()
                candi.add(p)
                if int(p) ** 2 > int(R):
                    continue
                for j in ["0", "1", "2"]:
                    q = (p[:len(p)//2] + j + p[len(p)//2:])
                    que.append(q)
        candi.add("1")
        candi.add("2")
        candi.add("3")
        res = 0
        for cand in candi:
            if int(L) <= int(cand) ** 2 <= int(R) and self.isPalindromes(int(cand) ** 2):
                res += 1
        return res
                
            
    def isPalindromes(self, s):
        s = str(s)
        N = len(s)
        for l in range(1, N // 2):
            if s[l] != s[N - 1 - l]:
                return False
        return True

相似题目

参考资料

https://leetcode.com/problems/super-palindromes/discuss/171450/Python-AC-bfs-detail-explanation

日期

2018 年 11 月 3 日 —— 雾霾的周六