968. Binary Tree Cameras 监控二叉树
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/binary-tree-cameras/
题目描述
Given a binary tree, we install cameras on the nodes of the tree.
Each camera at a node can monitor its parent, itself, and its immediate children
.
Calculate the minimum number of cameras needed to monitor all nodes of the tree.
Example 1:
Input: [0,0,null,0,0]
Output: 1
Explanation: One camera is enough to monitor all nodes if placed as shown.
Example 2:
Input: [0,0,null,0,null,0,null,null,0]
Output: 2
Explanation: At least two cameras are needed to monitor all nodes of the tree. The above image shows one of the valid configurations of camera placement.
Note:
- The number of nodes in the given tree will be in the range
[1, 1000]
. Every
node has value 0.
题目大意
如果放置一个摄像机,能覆盖当前节点、两个孩子节点、父亲节点。求最少的放置相机的个数。
解题方法
首先分析,每种节点能被多少种方案覆盖:
- 树中间的节点可以被当前节点、两个孩子节点、父亲节点四种方式覆盖。
- 根节点,可以被当前节点、两个孩子节点三种方式覆盖。
- 如果是叶子节点,可以被当前节点和父亲节点两种方式覆盖。
综上,我们最好的方案应该是从下向上,先设置叶子节点,然后移除所有覆盖的节点;再重复这个步骤。
具体方法是:
我们定义了一个函数dfs,
- 如果这个节点是叶子节点,返回0
- 如果这个节点是叶子节点的父节点,并且这个节点应该放相机,返回1
- 如果这个节点被子节点覆盖了,并且这个节点没有相机,返回2.
对于每个节点的话,
- 如果这个节点有子节点,并且这个子节点是叶子节点(节点0),那么当前节点需要相机0;
- 如果这个节点有子节点,并且这个子节点放置了相机(节点1),那么当前节点被覆盖了;
如果节点需要相机,那么对返回结果+1,并且返回1. 如果节点被覆盖了,返回2. 否则返回0.
C++代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minCameraCover(TreeNode* root) {
if (dfs(root) == State::NONE)
++ans_;
return ans_;
}
private:
enum class State {NONE = 0, COVERED = 1, CAMERA = 2};
int ans_ = 0;
State dfs(TreeNode* root) {
if (!root) return State::COVERED;
State l = dfs(root->left);
State r = dfs(root->right);
if (l == State::NONE || r == State::NONE) {
++ans_;
return State::CAMERA;
}
if (l == State::CAMERA || r == State::CAMERA) {
return State::COVERED;
}
return State::NONE;
}
};
参考资料:https://leetcode.com/problems/binary-tree-cameras/discuss/211180/JavaC%2B%2BPython-Greedy-DFS
日期
2019 年 1 月 7 日 —— 新的一周开始啦啦啊