990. Satisfiability of Equality Equations 等式方程的可满足性
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
@TOC
题目地址:https://leetcode.com/problems/satisfiability-of-equality-equations/
题目描述
Given an array equations of strings that represent relationships between variables, each string equations[i]
has length 4 and takes one of two different forms: "a==b"
or "a!=b"
. Here, a and b are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true
if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
Example 1:
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
Note:
- 1 <= equations.length <= 500
- equations[i].length == 4
- equations[i][0] and equations[i][3] are lowercase letters
- equationsi is either '=' or '!'
- equations[i][2] is '='
题目大意
给了一连串的等式和不等式,判断这些等式和不等式能否同时都成立。
解题方法
DFS
这题最难的部分就是数据抽象,其实并不难:把每个字母当做一个节点,把等号代表两个节点之间有连接,把不等号代表两个节点之间没有连接。判断这样的图是否存在。
由此可见,我们首先可以根据等号关系,把这个网的所有节点之间的连接构成一个无向图。然后对于不等号,我们记性dfs搜索,判断等号两边的节点能不能有路。如果有路代表两者通过一定的等号关系能够相互转化,那么就不符合不等号关系,返回false;如果所有不等号两边的节点都没有路,那么返回true.
这个题直接搜索的话会超时,可以把已经访问过的节点保存下来,这样的话,等我们在搜索下一条路的时候不会走已经搜索过的节点。
python代码如下:
class Solution(object):
def equationsPossible(self, equations):
"""
:type equations: List[str]
:rtype: bool
"""
self.m = collections.defaultdict(list)
for eq in equations:
if eq[1] == '=':
self.m[eq[0]].append(eq[3])
self.m[eq[3]].append(eq[0])
for eq in equations:
if eq[1] == '!':
if self.find(set(), eq[0], eq[3]) or self.find(set(), eq[3], eq[0]):
return False
return True
def find(self, visited, begin, end):
if begin in visited:
return False
visited.add(begin)
if begin == end:
return True
for n in self.m[begin]:
if self.find(visited, n, end):
return True
return False
并查集
判断两个点直接是否有连接的一个更为简单的方法就是使用并查集。如果两个节点的祖先相同,说明两者之间有路。
下面是一种并查集的写法,这个写法在查找某个节点的祖先的时候做了路径压缩,使得被查找节点直接挂载到了祖先上,这样下次查找的时候就不用搜索那么多了。而合并的这一步骤,是直接查找到两个节点的左右祖先,把其中一个的祖先设置成为了另一个。
不要太纠结,记住,对于a==b
,无论是a的祖先设置成b、还是把b的祖先设置成a,都不想影响查找出来的a和b的祖先是同一个元素。
python代码如下:
class Solution(object):
def equationsPossible(self, equations):
"""
:type equations: List[str]
:rtype: bool
"""
dsu = DSU()
for eq in equations:
if eq[1] == '=':
dsu.u(ord(eq[0]) - ord('a'), ord(eq[3]) - ord('a'))
for eq in equations:
if eq[1] == '!':
if dsu.f(ord(eq[0]) - ord('a')) == dsu.f(ord(eq[3]) - ord('a')):
return False
return True
class DSU(object):
def __init__(self):
self.m = range(26)
def f(self, x):
if self.m[x] != x:
self.m[x] = self.f(self.m[x])
return self.m[x]
def u(self, x, y):
px = self.f(x)
py = self.f(y)
self.m[px] = py
C++代码如下:
class Solution {
public:
bool equationsPossible(vector<string>& equations) {
init();
for (string& s : equations) {
if (s[1] == '=') {
u(s[0] - 'a', s[3] - 'a');
}
}
for (string& s : equations) {
if (s[1] == '!') {
if (f(s[0] - 'a') == f(s[3] - 'a'))
return false;
}
}
return true;
}
private:
int _fa[26];
void init() {
for (int i = 0; i < 26; ++i) {
_fa[i] = i;
}
}
int f(int x) {
if (_fa[x] == x) return x;
return _fa[x] = f(_fa[x]);
}
void u(int a, int b) {
int pa = f(a);
int pb = f(b);
_fa[pa] = pb;
}
};
日期
2019 年 2 月 21 日 —— 一放假就再难抓紧了